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Abstract—The internationalization of the electrical grid aug-
mented the complexity associated with maintaining the trans-
mission network and coordination between the Transmission
System Operators (TSOs) pertaining to the same interconnected
electrical grid. From the TSOs’ perspective, it is vital to un-
derstand and quantify the influence that the interruption of
an external network element can have on their control area,
to manage the impacts of outside interference that may put
at risk the service quality and continuity that they are meant
to preserve. In this work, we address three specific problems:
(i) how to evaluate the relevance of external assets for outage
coordination, (ii) how to identify the relevant assets efficiently
and within proper execution times, and (iii) how to minimize the
influence of data error in the results. To handle problem (i), we
developed a robust and scalable algorithm for Portugal’s specific
context that computes sensitivity values generated by Spanish
outages. The results are then compared against threshold values
and submitted under inspection to detect outlier features, such as
isolation and cross-border distance. For problem (ii), we propose
limiting the disconnected Portuguese assets of the studied outage
combinations to Critical Network Elements (CNEs), achieving
a decrease in execution time of 82.5%. Finally, to answer
problem (iii), we introduce an active power filter that can be
turned on or off, depending on the impact of error inserted
by scenarios with extreme active power values. Thus, allowing
the inclusion of such scenarios, guaranteeing a more reliable
representation of the grid’s year-long behavior.

Index Terms—Outage Planning Coordination, Regional Secu-
rity Coordinators, Transmission Network, Transmission System
Operators

I. INTRODUCTION

The coordination of outages gained traction on November 4,
2006, in Europe, following a severe electrical power disruption
that affected 10 countries, which resulted from a poorly
performed outage simulation and consequent disconnection
of a transmission line. This event pointed out the dangers
of fragile coordination between the Transmission System
Operators (TSOs) in Central Western Europe and led to the
creation of the first Regional Security Coordinators (RSCs) in
2008, with the mission of helping TSOs ensure the security of
supply on a European level by identifying and implementing
measures while also developing and performing coordination
services, such as Outage Planning Coordination (OPC) [1].

In Portugal’s context, the coordination of outages is primar-
ily within Portugal and Spain’s integrated electrical systems
since Portugal only has direct cross-border interconnections

with Spain, which expand Spanish outages’ influence into
Portugal’s national network assets.

As the OPC service is to be applied to all interconnected
Continental European grid, it cannot test all the possible
outages combinations and deliver remedial actions under the
time constraints imposed by the type and frequency of the
analysis it performs. Having said this, ENTSO-E developed
a methodology that allows TSOs to identify relevant external
assets to their control area during outage coordination in order
to allow the OPC service to obey its intrinsic time constraints.

In this paper, we apply the aforementioned methodology
to the Portuguese context and propose an iterative analysis
of possible relevant asset lists by testing multiple power flow
influence thresholds, complemented by a geographical analysis
to exclude outliers. We also address two other problems:
(i) how to identify the relevant assets efficiently and within
proper execution times and (ii) how to minimize the influence
of data error in the results. To handle problem (i), we propose
limiting the possible outage combinations in regard to the
disconnected Portuguese network elements. For problem (ii),
we introduce an active power filter to exclude data errors
introduced by scenarios with extreme active power values.

The remainder of this document is organized as follows:
Section II introduces the background of the methodology for
assessing relevant assets for OPC. In section III, we formalize
the algorithm proposal. In section IV, we discuss the imple-
mentation of the algorithm and the simulation environment.
The results are presented in section V. Finally, in section VI,
we sum up the paper’s main findings while emphasizing its
contributions.

II. BACKGROUND AND RELATED WORK

The focused methodology for assessing relevant assets is a
crucial component of the OPC service that the RSCs provide
to their integrating TSOs.

A. Transmission System Operator

European Network of Transmission System Operators for
Electricity (ENTSO-E) defines the TSO as “a company that
is responsible for operating, maintaining and developing the
transmission system for a control area and its interconnec-
tions” [2]. In this paper’s scope, it is also the TSO’s respon-
sibility to assess the relevance that external assets have on its



control area and provide a list of relevant assets to its RSC
for outage coordination. The Portuguese TSO is Rede Elétrica
Nacional (REN); its collaboration was fundamental, as only
with it were we able to access exclusive network services that
allowed us to simulate the data, using real scenarios of the
National Transmission Network (RNT), to create, test, and
optimize the developed algorithm.

B. Regional Security Coordinator

As we introduced in section I, the first RSCs were born in
2008, in an effort to improve the coordination between TSOs
of the same interconnected network. One of the first RSCs was
Coordination of Electricity System Operator (Coreso), located
in Brussels, in the heart of the Western European energy
sector. Coreso is Portugal’s RSC and helps the country dealing
with the ever-changing interconnected operating conditions
through network planning, system adequacy analysis, and
market setups.

In total, Coreso comprises nine TSOs, who are all its
shareholders and provides each one five services [3]:
• Individual Grid Model and Common Grid Model;
• Coordinated Security Analysis;
• Coordinated Capacity Calculation;
• Short and Medium Term Adequacy Forecasts;
• Outage Planning Coordination.

C. Outage Planning Coordination

The development of the OPC service was spurred because
generation and transmission systems such as overhead lines,
transformers, breakers, or measuring devices have a service
life. Therefore, regular maintenance work is required to keep
the systems healthy. While maintenance work is ongoing, the
equipment is unavailable; therefore, the TSOs need to be
informed when their counterparts are carrying out work to
avoid particularly tense situations on the grid.

This service aims at (a) identifying outage incompatibili-
ties between relevant assets (grid elements, generators, and
loads) whose availability status has cross-border impact which
limits the outages that can be performed at pan-European
level; (b) proposing solutions to relieve these incompatibilities;
(c) coordinating findings and Remedial Actions proposals
with other adjacent RSCs; and (d) increasing the operational
security of Europe’s power system by coordinating outage
planning on a weekly basis, based on generation and demand
forecast provided by all ENTSO-E Member TSOs.

To implement this service, RSCs require common reference
scenarios established by the TSOs and corresponding Common
Grid Model (CGM), and knowledge of all preliminary planned
outages on the main transmission network - AC and DC [4].
Furthermore, RSCs need, from each TSO, a list of relevant
assets. These are obtained by applying the methodology
established to assess the relevance of assets in accordance
with Article 84 of Commission Regulation (EU) 2017/1485
of 2 August 2017 [5].

To the author’s knowledge, no studies are proposing an
algorithm for the relevance assessment of assets for outage

coordination. However, there is some related work focused
on the challenges of interconnected power systems and the
importance of coordination between neighboring countries.
For instance, [6] studies the impacts of cross-border elec-
tricity interconnections on the reliability and vulnerability of
interconnected power systems. The importance of managing
interconnected power systems is also addressed by [7] when
studying the opportunity for a different initiative of regional
cooperation for the Greece-Italy region power system integra-
tion. Lastly, [8] recognizes the newer challenges introduced
by the increasing integration of renewable energies in the
French electricity network, such as the inadequacy of existing
maintenance outage planning methods.

Coreso itself, when mentioning the scope of the OPC
service, states that this is still a topic under development and
that its definition is subject to evolution depending on the
outcomes of the experimentation [4]. This ties into one of the
most significant contributions of this paper, which is working
on this methodology that is still being actively worked on by
REN in collaboration with Coreso and ENTSO-E.

III. PROPOSED FRAMEWORK

This paper proposes the application of ACER’s approved
methodology for assessing the relevance of assets for out-
age coordination to identify the Spanish outages that arise
significant power flow variations in assets that belong to
the control area of REN. For the methodology’s application,
an algorithm encompassing a program written in the high-
level programming language PYTHON [9] was developed for
Portugal’s specific case as a robust and scalable tool.

The algorithm is prepared to analyze two different network
conditions:
• N-1, when one asset of the grid is disconnected. The asset

can be internal (“N-1 PT”) or external (“N-1 ES”) to the
TSO’s control area.

• N-2, when two assets of the grid are disconnected. These
can be simultaneously from a control area external to the
TSO (“N-2 ES”) or one internal to the TSO’s control area
and the other external (“N-1 PT + N-1 ES”).

This N-2 contingency analysis is critical to understand the
power system conditions pre-emptively before taking correc-
tive control.

The analysis of “N-2 ES”, unfortunately, will not be ad-
dressed in the context of this paper results, only in the context
of the tool specifications, since due to delays related to the
COVID-19 pandemic, we were not able to incorporate the
necessary data.

A. Methodology for assessing the relevance of assets

To apply the methodology, each TSO has to identify its
Outage Coordination Region (OCR) since this allows to
limit the external assets to the pertinent for the analysis
being performed. ACER decided the division of regions in
accordance with the Commission Regulation (EU) 2015/1222
of 24 July 2015 on CACM Regulation [10], meaning that
the OCRs were defined to be the same as the Capacity



Calculation Regions (CCRs) unless the involved TSOs decide
to merge their coordination regions into one unique OCR. In
the Portuguese context, the CCR includes Spain and France.

The quantification of the relevance of the assets is carried
out by applying the influence computation method on a year-
ahead CGM developed in accordance to Article 67 of Com-
mission Regulation (EU) 2017/1485 of 2 August 2017 [11].
This application outputs a relative or absolute value of power
flow or voltage variation whose result can be compared against
defined thresholds.

The computation method measures the power flow influence
factor of simultaneous interruptions of network elements con-
nected outside the TSO’s control area on network elements
inside the TSO’s control area. In circumstances where the
power flow influence factors are insufficient to identify relevant
external network assets that can cause significant voltage
variations in the TSO’s control area, the TSO can use voltage
influence factors to determine its proposal of relevant assets,
as long as all the affected TSOs are informed.

The influence factors computed for each external network
element are compared to the selected and correspondent
threshold values, and if the influence factors are greater than
the thresholds, then the network element can be considered a
relevant asset.

Network elements can be power generation modules, de-
mand facilities connected to a TSO, transmission power lines,
autotransformers, and Significant Grid Users (SGUs).

The relevance of external network elements should be re-
assessed every three years after the first assessment. Addition-
ally, after obtaining the list of relevant assets, the TSOs shall
complement it with the critical network elements identified in
accordance with the CACM Regulation [5], [10].

B. Influence Thresholds

In Table I, we can see the range of thresholds published by
ACER. Each TSO must choose a value for each threshold. If
the methodology is applied using power flow, then two values
must be chosen – one for the power flow filtering influence
threshold and another for the power flow identification influ-
ence threshold. If the methodology is applied using voltage,
then the TSO needs to choose one value for the voltage
threshold.

TABLE I
RANGE OF INFLUENCE THRESHOLDS FOR POWER FLOW AND VOLTAGE.

SOURCE: [5]

Power flow

identification threshold

Power flow

filtering threshold

Voltage

threshold

15 - 25% 3 - 5% 3 - 5%

As previously mentioned, when applying the methodology,
the TSO may opt to compute the voltage influence factor
instead of the power flow influence factors.

When we compute the voltage influence factor, we are veri-
fying if external assets disconnected outside the TSO’s control

area can trigger a significant voltage deviation on a node of the
TSO’s control area. Voltage deviations are related to reactive
power generation and consumption. Excessive reactive power
in the grid raises the voltage while insufficient reactive power
decreases the voltage. In the Portuguese context, the RNT does
not suffer heavily from voltage deviations because of voltage
support provided by hydroelectric and thermal generators,
synchronous compensators, and due to investment in grid
components such as shunt reactors, transformer tap-changers,
and capacitor banks. Portugal’s lack of voltage issues means
that the disconnection of Spanish assets would not affect
Portugal’s voltage control making it impertinent to opt for a
voltage analysis during the implementation of the methodology
for assessing the relevance of assets. For this reason, we focus
solely on an active power flow analysis [12].

Having determined the type of analysis we wish to perform,
we will now look into the two power flow influence thresholds.

The power flow filtering influence threshold represents the
associated precision of measurement expected of the control
system Supervisory Control and Data Acquisition (SCADA),
state estimation computations, and the models used to calculate
the power flows. If the power flow filtering influence factor is
less than or equal to the correspondent threshold, then we
know that the power flow measurements used to compute the
influence factor are affected by the measuring and transmis-
sion systems errors; therefore, they should not be considered
relevant assets.

In turn, the power flow identification influence threshold
represents the minimum active power flow variation value
necessary for the TSO, based on its experience, to identify
and deem a change relevant. A change greater than the
defined threshold should be seen, independently of the cause,
as warning information in need of careful evaluation and
monitoring from the dispatcher. When the variations of active
power flow are less than or equal to the defined threshold,
the external assets should not be identified as relevant for the
coordination of outages.

Each TSO chooses a value associated with the power flow
filtering influence threshold and another one associated with
the power flow identification influence threshold. These two
chosen values, which are within the range of values defined
by ENTSO-E, are independent of the asset type.

For a network asset connected outside the TSO’s control
area to be considered relevant for the coordination of outages,
the values resulting from the computation of both influence
factors must be greater than their correspondent influence
threshold values since the two influence factors are interdepen-
dent, meaning both must verify the criteria in order to validate
the relevance classification.

Choosing the adequate threshold values is an iterative pro-
cess. When analyzing different combinations of thresholds, to
decide which one to use, we have to consider the following
criteria: (a) thresholds should be low enough to minimize the
risk of not including all relevant grid elements that can threaten
the security of neighboring control areas; (b) thresholds should
be high enough to avoid overly lengthy relevant asset lists



filled with noise, thus leading to an inefficient process, po-
tentially not compatible with time constraints of the outage
coordination process.

C. Power Flow Influence Factors

According to the guideline on electricity transmission sys-
tem operation, influence factor is “the numerical value used
to quantify the greatest effect of the outage of a transmission
system element located outside of the TSO’s control area
excluding interconnectors, in terms of a change in power flows
or voltage caused by that outage, on any transmission system
element. The higher is the value the greater the effect” [11].

For each external asset r, there are two influence factors –
the power flow filtering influence factor and the power flow
identification influence factor.

To explain these two factors, one needs to introduce the
Outage Transfer Distribution Factor (OTDF), a sensitivity
measure of how a change in a line’s status affects the active
power flow on other lines in the system. Each external asset
r has as many OTDFs as the total number of combinations of
assets t and i (t× i) considered in the analysis.

OTDF =
P t
s,n−i−r − P t

s,n−i

P r
s,n−i

(1)

The power flow filtering influence factor, IF pf,f
r , is the

maximum OTDF of an external element r on any given
internal element t, in any scenario s, and taking into account
any element i disconnected.

IF pf,f
r (%) = MAX∀i∈I,∀s,∀t∈T (OTDF × 100) (2)

The power flow identification influence factor, IF pf,id
r , is

the maximum normalized OTDF of an external element r on
any given internal element t, in any scenario s, and taking into
account any element i disconnected.

OTDFnorm =
P t
s,n−i−r − P t

s,n−i

P r
s,n−i

× PATLs,r

PATLs,t
(3)

IF pf,id
r (%) = MAX∀i∈I,∀s,∀t∈T (OTDFnorm × 100) (4)

In equations (1), (2), (3), and (4):
i stands for network element connected either in the TSO’s

control area or outside TSO’s control area considered discon-
nected from the network when assessing the expression. This
network element cannot be the same as element t nor r.

r stands for the network element connected outside TSO’s
control area whose power flow influence factor is assessed.

t stands for the network element connected inside TSO’s
control area where the active power difference is observed.

T , I , and R represent the set of their respective lowercase.
P t
s,n−i−r represents the active power flow through the

network element t, in scenario s, with network elements r
and i disconnected from the network.

P t
s,n−i represents the active power flow through element t,

in scenario s, with network element r connected to the network
and network element i disconnected from the network.
P r
s,n−i represents the active power flow through the el-

ement r, in scenario s, when connected to the network,
considering the network element i disconnected from the
network.
PATLs,r represents the loading in MVA or MW that can be

accepted by network element r, in scenario s, for an unlimited
duration.
PATLs,t represents the loading in MVA or MW that can be

accepted by network element t, in scenario s, for an unlimited
duration.

The difference between the two power flow influence factors
is that the power flow filtering influence factor is only an
image of the load transfer and is independent of the flow of the
assessed element, while the power flow identification influence
factor is better at describing the risk of overload since by
considering the grid elements PATL values, it is capable of
simulating the consequences of occurring an outage in highly
loaded network elements.

Looking at equations (2) and (4), we can point out the divi-
sion of PATLs,r by PATLs,t. This division is the numerical
representation of the ratio of PATL between the influencing
element r and the influenced element t, which has the purpose
of normalizing the OTDF value.

PATL is the capacity an asset of the network has of
accepting power during an unlimited quantity of time. This
parameter describes how loaded an asset can be before it trips
out of service. Not all the assets of the network have the same
PATL; some have higher values than others. The normalization
is crucial when there are high discrepancies in loading between
the elements t and r.

Figure 1 illustrates a fictional transmission network to better
understand how the OTDF computation is performed.

Fig. 1. Computation of the power flow influence factors (adapted from [13])

The example depicted in Figure 1 is repeated hundreds of
thousands of times throughout the algorithm with alternating
t, r, and i network elements.

D. Algorithm Description

As previously stated, this paper’s main contribution is the
proposal of an algorithm that will apply the methodology



published by ACER for assessing the relevance of assets for
outage coordination. The algorithm presented will analyze
different combinations of power flow influence thresholds and
select the most coherent and reliable relevant assets list for
outage planning coordination.

The algorithm encompasses three main steps: (i) data sim-
ulation, (ii) power flow influence factors computation, and
(iii) threshold selection.

Data simulation: The first step of this algorithm is the
data simulation since the computation of power flow influence
factors is performed by resorting to data extracted from simu-
lations made with models of the known grids. The algorithm
needs multiple scenarios representative of the grid’s different
states throughout the year to generate meaningful data files.

The second step is to define the type of N-2 contingency
analysis intended, “N-2 ES” or “N-1 PT + N-1 ES”.

The final and third step is to generate a list of Critical
Network Elements (CNEs) identified in accordance with the
CACM Regulation [14] for the power flow influence factors
computation.

Influence factors computation: This algorithm’s most com-
plex and demanding process lies in computing the power flow
filtering influence factor and the power flow identification
influence factor due to the number of iterations necessary.
To overcome this challenge, we developed a PYTHON [9]
program envisioned for the specific case of Portugal.

For the program’s execution, some assumptions regarding
the data organization were necessary, such as the overall data
hierarchy, the name structure of folders and files, and the data
organization within each file. These assumptions were made
based on the manner in which the files were delivered and
presented by REN.

To compute the power flow influence factor of each asset r,
both filtering (IF pf,f

r ) and identification (IF pf,id
r ), the pro-

gram deconstructs equations (2) and (4) in the following steps:

1) For scenario s, compute the OTDF (equation (1)) and
normalized OTDF (equation (3)) of asset r on asset t.

2) Compare the computed values to the thresholds defined
in the pre-requisites. If the values are less than or equal
to the thresholds, they are rejected, and the program
moves on to the next asset t. However, if the values
computed are greater than the thresholds defined, the
values are stored in the respective dictionary associated
with the asset r.

3) Replicate the above steps for every asset t.
4) Replicate the above steps for every asset r.
5) Replicate the above steps for every asset i.
6) Compare all the stored values and keep only the max-

imum values of the OTDFs and normalized OTDFs of
each r.

7) Write both power flow influence factors of each asset r
(IF pf,f

r and IF pf,id
r ), of scenario s, in an EXCEL® file.

8) Replicate the above steps for every scenario s.

9) Lastly, compare all the power flow influence factor
values for each asset r and keep only the maximum
values, thus creating a final EXCEL® file with a unique
and global list of the relevant assets r buses names and
respective power flow influence factors.

When developing the program, it was ensured that all the
data necessary for the computation of the two elementary
factors of influence was organized quickly and with low
memory consumption.

Threshold selection: The final phase of the algorithm is
a testing phase, where different combinations of power flow
influence thresholds – filtering and identification – will be
compared to conclude which one produces the most coherent
and reliable list of external relevant assets for the coordination
of planned outages.

To optimally compare the different combinations of values
for both thresholds, we propose that the user computes first
the extreme values (lower and upper boundary) from the
range published by ACER (see Table I) and then run extra
combinations until a satisfactory conclusion is reached. This
combinatorial analysis is dependent on the TSO’s expert
evaluation, and its knowledge of the transmission grid since
the lists of relevant assets generated may feature assets that are
not actually relevant or ignore network elements that should
be considered.

Finally, after comparing the different lists of relevant assets
produced by different threshold combinations, we select the
most coherent and reliable list of assets for outage coordina-
tion, along with the corresponding values for both power flow
influence thresholds.

IV. IMPLEMENTATION AND OPTIMIZATION OF THE
ALGORITHM

In this paper, we used the software PSS/E to define and
configure the necessary inputs, namely dates, assets to be
disconnected, and networks of interest. The dates were defined
to have the desired profiles of consumption and production;
the disconnected grid elements were defined to represent
the possible outage combinations; the networks of interest
were defined to only include impactful neighboring networks
(Spain Electrical Grid (REE)’s transmission grid). Regarding
the latter, initially, we considered the OCR defined by ACER,
as mentioned in subsection III-A, but given the accumulated
experience of REN, we knew that France’s electrical grid
is secluded enough from Portugal that it would not have a
significant influence on the power flow values of Portugal’s
transmission network. After setting the desired conditions, we
used PSS/E to export the data in CSV files to be used by the
developed algorithm to perform the computations. PSS/E used
Coreso’s CGM and Coordinated Capacity Calculation (CCC)
services to run the power flow simulations.

Being Portugal’s TSO, REN operated the processes men-
tioned above and provided different scenarios representative
of the grid’s behaviors throughout the year.



A. Proposed Scenarios
When choosing the best scenarios to focus on, we decided

the days by analyzing the load profiles of previous years. One
of those years was 2018, presented in Figure 2, in which
we have four curves representing four characteristic days that
illustrate specific and relevant load behaviors.

Fig. 2. Load diagram of National Transmission Grid profiling days of 2018
(adapted from [15])

The two curves with the highest power consumption values
were on February 7, 2018, and August 3, 2018, while the
curves with the lowest power consumption values were on
April 18, 2018, and October 17, 2018. We can conclude
from these dates that the periods when the transmission grid
showcases its most extreme conditions coincide with the
different meteorological seasons of the year: winter, summer,
spring, and autumn.

For the methodology that we pretend to apply, these extreme
conditions are the ones we look for since the grid is in a fragile
state, increasing the network elements’ sensitivity to external
power flow changes. Thus, we chose one scenario for winter
and one scenario for summer, both during periods where we
noted a peak in consumption since these are the seasons in
which consumption is at its highest, but at different times
of the day. In addition, we chose two scenarios for spring,
the first during a period where consumption was around its
peak and the second where the consumption was at its lowest,
as this season, much like autumn, displays the lowest peak
and off-peak power values. Unfortunately, there is no scenario
during autumn, but as we can see in Figure 2, the curves of
October 17, 2018, and April 18, 2018, follow a very similar
distribution, meaning that conclusions taken from the spring
scenario can be extrapolated for the missing autumn scenario.

To find and analyze the grid behaviors described, we used
Coreso’s services CCC and CGM. Both services work based
on grids prepared two days in advance, which means they are
an estimate of the state in which the grid will be. We prefer
them instead of the real-time grids because the estimated grids
have Portugal and Spain’s interconnected grid modeled in its
totality, which is the best approach for the study this paper
proposes to perform, as it permits that we test the effect of
disconnecting all the Spanish transmission network elements.

Having set the features and the grid models we wanted to
study, we started the iterative process of choosing the best
dates. This process’s iterative nature came as a consequence
of using 2020 scenarios, which are the most relevant and up-
to-date scenarios. Something inherent to newer project services
is that their availability status is not always positive. On top
of that, even when the grid models were available, we also
had to guarantee that the power flow values converged during
simulations, i.e., the mismatch of active power flow values was
low enough to consider the scenario stable. These two traits
restricted the pool of options.

For the winter scenario, we wanted high power consumption
values, a strong component of hydroelectric and wind energy
generation, a weak thermal component, and a positive import
balance. The strong component of hydro and wind is due to
the fact that these sources of generation are the most prevalent
during winter since we observe heavy rain and strong winds.
The positive import balance increases the transmission grid’s
sensitivity to external power flow variations and is usually
correlated with a reduction in domestic thermal production.
February 17, 2020, during the evening (peak consumption
period), verified all the above conditions while also having
the grid model available and stable power flow computations.

For the spring scenarios, we sought one where we could
observe a low value of consumption and another where we
could detect a high value of consumption. The other desired
conditions were a strong wind and hydroelectric component
in the national production that featured a positive import
balance for the same reasons stated for the winter scenario.
May 13, 2020, showcased off-peak and peak consumption
values in line with the sought-after tendencies. The first
during small hours and the latter during the beginning of the
afternoon. The grid model of this day was available and also
showed stable power flow computations.

In the case of the summer scenario, the specifications we
sought were different from the ones mentioned so far. We
wanted a weak hydroelectric and wind generation component
and a strong thermal production since these are the most rep-
resentative features of this season. We also wanted a negative
import balance since it typically correlates to higher values of
thermal production. July 30, 2020, during the beginning of the
afternoon (peak consumption period), verified all the above
conditions, had the grid model available, and stable power flow
computations.

B. Algorithm Optimizations

As the first optimization of the algorithm, we looked at how
to identify all relevant assets while obeying the execution time
constraints. To handle this problem, we propose limiting the
possible outage combinations by considering as disconnected
Portuguese network elements (i) only the Critical Network
Elements.

CNEs are grid assets, such as national very high voltage
transmission lines and transformers, that, according to CACM
Regulation, restrain the cross-border exchanges through the
interconnection lines. In this specific case study, we are talking



about the cross-border exchanges between Portugal and Spain.
The CNEs limit the interconnection lines’ transmission capac-
ity because, during the CACM service development, these net-
work assets were observed as having significant sensitivity to
cross-border power flow variations [10]. Due to the sensitivity
these network elements present, it becomes crucial to closely
monitor them since they affect the security of the RNT and the
energy market. What makes for a significant sensitivity was
defined by REN through data analysis and experience, and
it was concluded that a grid element is considered a CNE if
the power flow variation is greater than or equal to 5% when
the power flow of the interconnections increases or decreases
100 MW [16].

From Table II, we can infer that by limiting the network
element i to CNEs, we obtain results that are equal to
the ones contemplated when we consider all the Portuguese
contingencies, and we observe a decrease in execution time of
82.5%.

TABLE II
COMPARISON BETWEEN THE RESULTS CONSIDERING AS ELEMENT i ONLY

CNES AND ALL PORTUGUESE CONTINGENCIES

Year 2020
# of identified assets Execution time (min)

CNEs All conting. CNEs All conting

February 17 24 24 2 10

May 13 (off-peak) 32 32 1.5 10

May 13 (peak) 125 125 1.5 10

July 30 23 23 2 10

All scenarios 136 136 7 40

Due to the recursive and time-constrained nature of the
analysis performed, we conclude that using CNEs is the best
approach.

The second optimization performed was developed to in-
crease the robustness of the algorithm through the introduction
of a filtering condition that identified when the program was
dealing with a network element t that belonged to a tripod
node. This filtering condition limits the validation of an asset r
if only one of the Portuguese transmission lines that compose
the tripod node is significantly sensitive to its outage, as it is
improbable that only one of the tripod node transmission lines
is critically sensitive to the outage of the said external asset r
since they share a common node, as illustrated in Figure 3.

Fig. 3. Tripod node of the 400 kV transmission lines connecting Sines,
Palmela and Fanhões substations

The third and final optimization was introduced as a
supplementary solution to the power flow filtering influence
threshold. Upon compiling and saving the relevant assets list
for the first testing iterations, the number of assets included
in the output proved to be greater than expected. Some of the
identified asset’s geographical position would not realistically
allow for the values of sensitivity computed. The first approach
we took was to tune the threshold values.

When considering the power flow filtering threshold equal
to 3% and the power flow identification influence threshold
equal to 15%, we identified the network elements distribution
throughout Spain, and the number and the location of the
assets were respectively high and dispersed. When tuning up
the threshold values to their maximum, considering a power
flow filtering influence threshold equal to 5% and a power flow
identification influence threshold equal to 25%, we observed
a decrease of 52.2% in the number of assets identified as
relevant. However, the number was still quite elevated, and
the assets’ dispersion persisted.

For this reason, it was decided to study each scenario
separately to locate the source of the problem. We used the
developed tool’s capability to assess each date independently
to look at each scenario’s contribution to the final output. As
one can see in Table III, it became clear that the contribution
of the scenario of May 13, 2020, during the peak consumption
period, is vastly more significant than the contribution of the
other three scenarios.

TABLE III
RELEVANT ASSETS PER SCENARIO FOR FILTERING THRESHOLD EQUAL

TO 3% AND IDENTIFICATION THRESHOLD EQUAL TO 15%

Year 2020 Number of identified assets

All scenarios 136

February 17 24

May 13 (off-peak) 32

May 13 (peak) 125

July 30 23

All scenarios minus May 13 peak 38

After consulting with REN, we concluded that the scenario
indeed introduced some noise into the results due to the
fact that the simulation conditions generated extreme power
flow values, which made the influence of errors associated
with the criteria of convergence of power flow computation
more impactful than desired. Even though the computation
did converge with acceptable errors in accordance with the
parameter of the power flow tool used by the TSO, the errors
introduced noise that could not be filtered solely by the range
of thresholds published by ACER. Thus, we developed active
power filtering conditions to include this spring scenario.

In Table IV, highlighted in a shade of blue, we point to the
total of relevant assets featured in the output list (25) when we
consider all the scenarios and the active power filter. When this
value is crosschecked to the number of assets present in the
output, when the scenario of May 13, 2020 (peak) is excluded,



we find that the results are more resemblant than when we
consider all the scenarios without the filter.

Although we are missing 13 relevant assets, when we
compare the missing relevant assets’ geographical position and
power flow influence factors, we observe that they are either
far from the interconnections lines or have low power flow
influence factors, close to the minimum values of the filtering
and identification threshold ranges. Such traits make us believe
that those assets were validated because of errors present in
the inputs, and therefore were correctly expunged.

TABLE IV
ACTIVE POWER FILTER EFFECT IN THE NUMBER OF RELEVANT ASSETS

FOR FILTERING THRESHOLD EQUAL TO 3% AND IDENTIFICATION
THRESHOLD EQUAL TO 15%

Number of identified assets
Year 2020 Without

active power filter

With

active power filter

February 17 24 16

May 13 (off-peak) 32 15

May 13 (peak) 125 15

July 30 23 13

All scenarios

minus May 13 (peak)
38 24

All scenarios 136 25

With a more plausible geographic distribution of the identi-
fied relevant assets, we validate the effect of the active power
filter and how it enabled us to consider the scenario that
otherwise would have to be excluded from the analysis limiting
the transmission grid’s behavior representation throughout the
year.

The active power filter is an optimization that can be
turned on and off. It is only necessary when the transmission
networks under analysis work mostly with scenarios where
the interconnection lines operate at extreme values of active
power flow. By implementing this optimization, we provide
a solution that minimizes the influence of data error in the
results.

V. RESULTS AND DISCUSSION

This section will not present images or tables to accompany
the results due to privacy and security reasons.

A. Research Stage 1

As mentioned throughout the paper, one of the objectives
of the algorithm is the identification of the most suiting
combination of power flow influence thresholds from the range
of thresholds published by ACER (see Table I).

The first iteration was performed by defining the minimum
threshold values for both the filtering and identification influ-
ence thresholds (combination I). In contrast, the second was
executed by setting the maximum threshold values for both
the power flow influence thresholds (combination II). This
strategy allowed us to observe what it meant to use the most

permissive definition of thresholds and how the results evolved
as more restrictive the algorithm became. The most permissive
definition of thresholds would be combination I since the lower
the threshold values, the lower are the sensitivities that need to
be observed for an external asset to be included in the relevant
assets list, meaning that more assets will be included in the
output list. On the contrary, the most restrictive combination
of thresholds would be combination II as the greater the
threshold values, the less external assets will present power
flow influence factors that meet the threshold values, therefore
restricting the number of network elements included in the
algorithm’s output.

The results obtained from analyzing the four chosen scenar-
ios for threshold combination I compose a relevant assets list
containing 25 assets (twenty-four 400 kV transmission lines
and one 220 kV transmission line).

By contrast, the results obtained from analyzing the four
chosen scenarios for threshold combination II compose a
relevant assets list containing eight 400 kV transmission lines.

When we compared combination I to combination II, we
realized that as the threshold values increased, the cluster of
transmission lines gravitated to the border between Portugal
and Spain, which is expected as what allows different control
areas to influence one another in the first place is the inter-
connections present at the borders. We also noticed that the
total number of assets in combination II is 68% lower than in
combination I.

B. Research Stage 2

As a complementary analysis, we studied the influence of
each power flow threshold separately through two extra com-
binations. These combinations and the previously mentioned
are presented in Table V.

TABLE V
COMBINATION OF THRESHOLDS AND RESPECTIVE QUANTITY OF

IDENTIFIED RELEVANT ASSETS

Combination
Power flow influence thresholds # of relevant

assets identifiedFiltering Identification

I 3% 15% 25

II 5% 25% 8

III 5% 15% 25

IV 3% 25% 8

On the one hand, as we can see in Table V, the difference
between considering the power flow filtering influence thresh-
old equal to 3% or 5% is nonexistent (combination I versus III
or II versus IV). This lack of influence does not mean that the
range of thresholds published by ACER is inadequate; it is
related to the introduction of the active power filter mentioned
in section IV-B.

The active power filter was created to solve problems
associated with errors introduced during the simulations and
power flow computations, and the power flow filtering influ-
ence threshold job is to filter power flow filtering influence



factors that are less than or equal to the expected sensitivity
associated with computation and model errors. By sharing the
same purpose of filtering errors from the results, they end up
overshadowing each other’s influence. In this paper’s specific
case study, there was a scenario whose simulation conditions
and ultimately power flow values were so extreme that the
introduction of the active power filter was needed to allow
for that specific scenario to be considered. Otherwise, the
scenario would have to be excluded from the analysis, limiting
the transmission grid’s behavior representation throughout the
year.

On the other hand, the difference between considering the
power flow identification influence threshold equal to 15% or
25% is quite noticeable as from combination I to IV (or II
to III), we observe a decrease of 68% in identified relevant
assets.

With the results obtained so far, we can analyze and discuss
the threshold combination that can produce the most coherent
and reliable relevant assets list.

C. Thresholds Selection

The results obtained from combination I (and III) are quite
promising as they include a reasonable amount of network
elements and demonstrate a coherent geographical position
and distribution. However, we can still identify a maverick
transmission asset that most likely should be excluded from
the end result.

The particular network element that caught our attention
was a 400 kV transmission line located in Spain’s east coastal
area (LC4). This asset’s inclusion in the output list is somewhat
dubious because of how distant it is from all the other
identified assets. For this reason, we looked at its power
flow identification influence factor (16.0002%) and power flow
filtering influence factor (14.78%). From these two values, we
could infer that increasing the power flow filtering influence
threshold would not affect this asset’s inclusion, but the power
flow identification influence threshold would.

Because of that, we increased the power flow identification
influence threshold to 16.1% and reran the algorithm to
exclude the questionable transmission line from the output.
However, two other assets were also excluded as a result of this
increase, even though they do not share the same geographic
characteristics as the asset we wanted to disregard.

From this point onward, two approaches can be taken. The
first is to define the final power flow identification influence
threshold equal to 16.1%, while the second is to keep the
power flow identification influence threshold equal to 15% and
manually remove the problematic transmission line from the
output.

To decide which approach fits our objectives best, we need
to study the LC4 transmission line and the two assets affected
by this decision weighing the value of only excluding the
dubious transmission line versus excluding the three network
elements.

In this case, the two transmission lines are close to the
border between Portugal and Spain and share common nodes

with other transmission lines that are also listed in the relevant
assets file. Contrarily, the transmission line LC4, as already
stated, stands distant and isolated from the border, meaning
that it is far from the interconnection lines that allow the
asset to influence the Portuguese network elements and that
it has no adjacent connections also identified as relevant. The
distance parameter is an important characteristic because both
the Portuguese and Spanish national transmission grids are
quite meshed, which means that there are alternative routes
for power to flow in case of outages, making the propagation
of congestion to a Portuguese element t significantly less
likely the further away the external asset r is from the
interconnections.

To further substantiate the argument that LC4 is an outlier
and not an odd exception, we look to try to answer the
questions: ”How many times does this asset r verify the
conditions necessary to be considered a relevant asset?” and
”In how many of the considered scenario is LC4 classified as
relevant?”.

To answer the first question, we made the algorithm count
how many times the LC4 generated an OTDF and normalized
OTDF greater than the defined thresholds. In total, we counted
four validations – when most of the relevant assets have 30 to
1500 validations.

To answer the second question, we looked at each scenario’s
results individually and observed that LC4 was considered
relevant in only one scenario – May 13, 2020, during the
off-peak consumption period – when most are considered at
least in two scenarios.

To summarize, LC4 is distant from the interconnection lines,
it does not have any of its adjacent connections considered
relevant network elements, its relevancy is only validated four
times, and those validations only occur in one of the four
considered scenarios. Therefore, we find that the probability
of the influence values obtained repeating is low and should
not be used as a reference to set the power flow identification
influence threshold at the cost of discluding two geographi-
cally relevant assets.

Thus, in this paper’s scope, we propose to opt for the
second approach since it generates the most inclusive result
and guarantees that we are not eliminating any asset crucial
for the correct application of the OPC service.

Having to exclude a network element from the output list
manually does not call into question the contribution that the
implemented algorithm provides, as it should be noted that we
had data from approximately 1,100 Spanish assets, which was
reduced significantly (about 97.7%). Only with this reduction
of the assets pool could we make a careful and detailed
analysis that would allow an asset to be manually removed
from the output list.

In conclusion, we can observe that there is value in allowing
space for the TSO to rule out specific assets in cases where
increasing the threshold values would harm the overall relevant
assets list.

Having set the value for the power flow identification influ-
ence threshold, we need to attribute a value to the power flow



filtering influence threshold to close the final combination.
Although it is true that in the results obtained it was indifferent
if the power flow filtering influence threshold was 3% or 5%,
we believe that throughout the paper it was proven how crucial
it was to decontaminate the results from the noise introduced
by the grid models and power flow computations. Therefore,
we consider that the best proposal for situations similar to the
one studied is to consider the most restrictive value (5%) as a
precaution measure.

VI. CONCLUSIONS

When implementing the algorithm, different scenarios were
considered so that the results are eligible and representative
of the transmission grid’s year-long behavior. Different op-
timization studies were performed such as (a) considering
only CNEs as disconnected Portuguese network elements
effectively cutting the execution time of the algorithm by
82,5% for each run while maintaining the same results as if
we did consider all possible Portuguese outages, which was
crucial due to the recursive and time-constrained nature of
the analysis performed; and (b) implementing a switchable
feature for an active power filter as a complementary approach
to the power flow filtering influence threshold minimizing the
influence of data errors in the results caused by scenarios with
extreme power flow values.

Furthermore, to evaluate the relevance of external assets
in outage coordination, we propose selecting a power flow
filtering threshold equal to 5% and an identification threshold
equal to 15% while considering a qualitative assessment to
exclude from the final output list assets that are geograph-
ical outliers. We chose 5% for the filtering threshold as a
precaution measure since with the introduction of the active
power filter, the available range for the filtering threshold
did not modify the relevant assets list but as we observed
throughout the paper it is of upmost importance to guarantee
that the results are decontaminated of the influence of data
error. Moreover, we chose an identification threshold equal
to 15% because we found that the list of relevant assets
was already succinct enough that increasing the identification
threshold beyond the 15% would eliminate assets that, due to
their geographical position and connections, would most likely
be crucial during the coordination of outages.

We identified in total twenty-three 400 kV and one 220 kV
transmission line as relevant grid assets for outage coordi-
nation. The transmission lines concentrate around the border
between Portugal and Spain and all of them share nodes with
at least one adjacent relevant asset, meaning that there are no
single assets dispersed or isolated.

Finally, it can be concluded that the algorithm fulfills the
primary objective herein proposed of evaluating the relevance
of assets for outage coordination.
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